Preview

Ernst Journal of Animal Science

Advanced search

Use of milk biomarkers to assess productive qualities and physiological status of cows

https://doi.org/10.25687/3034-493X.2025.4.3.004

Abstract

Milk is an important source of nutrients for humans. Changes in the component composition of milk reflect the metabolic status and health status of cows. Specific milk parameters can be used as biomarkers reflecting cows' energy status, metabolic processes, health status and nutritional value of the diet. Biomarkers can serve as a simple tool in assessing herd management responsible for the formation and subsequent implementation of cow productivity. The introduction of additional parameters for assessing the quantitative and qualitative composition of cows’ milk should have a positive impact on the realization of the genetic value of the animal, extending the period of productive use and the quality of the resulting product.
Milk productivity and the quality composition of milk depend on many factors. The use of Fourier-transform infrared spectroscopy for the development of management and selection tools for dairy farms provides great opportunities as a simpler and more reliable method that allows monitoring of the herd during control milkings, taking into account the collection of individual data for each cow.
The presented article discusses the functional parameters of cow milk biomarkers, the possibilities of their practical implementation, scientific significance and prospects for inclusion in scientific research.

About the Authors

I. A. Lasneva
L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Moscow Region



A. A. Sermyagin
All-Russian Research Institute of Genetics and Farm Animal Breeding, Branch of L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Saint Petersburg



References

1. Ефимова Л.В., Фролова О.А., Зазнобина Т.В. Влияние быков – производителей голштинской породы на физико-химические и технологические свойства молока дочерей // Вестн. Ульяновской гос. с.-х. акад. 2018. № 4 (44). С. 154 – 157.

2. Ковальчук С.Н. Гены-кандидаты устойчивости крупного рогатого скота к маститу : (обзор) // Проблемы биологии продуктивных животных. 2021. № 3. С. 19 – 31.

3. Leblanc S. Monitoring Metabolic Health of Dairy Cattle in the Transition Period // Journal of Reproduction and Development. 2010. Vol. 56. Iss. S. P. S29 – S35. doi.org/10.1262/jrd.1056S29.

4. E Rojas Canadas. Postpartum vaginal discharge score is associated with genetic traits, postpartum fertility phenotypes, metabolic status, and overall reproductive performance in seasonal-calving pasture-based dairy cows // Journal of Animal Science. 2023. Vol. 106 (12). Р. 9778 – 9792. doi: 10.3168/jds.2023-23324.

5. Скопичев В.Г., Племяшов К.В., Щепеткина С.В., Корочкина Е.А., Ришко О.А. Факторы возникновения и формы течения мастита // Мастит: этиология, профилактика, диагностика, лечение : учеб. пособие. СПб: Изд-во ФГОУ ВО СПбГАВМ, 2020. С. 64 – 82.

6. Мастит: этиология, профилактика, диагностика, лечение : учеб. пособие / С.В. Щепеткина и др. – СПб.: Изд-во ФГОУ ВО СПбГАВМ, 2020. 308 с.

7. Grelet C., Larsen T., Crowe M.A. et al. Prediction of key milk biomarkers in dairy cows through milk MIR spectra and international collaborations // J. Dairy Sci. 2023. In Press, Journal Pre-proof. doi.org/10.3168/jds.2023-23843.

8. De Marchi M., Toffanin V., Cassandro M., Penasa. M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits // J. Dairy Sci. 2014. Vol. 97. 3: P. 1171 – 1186.

9. Delhez P., Colinet F., Vanderick S. et al. Predicting milk mid-infrared spectra from first-parity Holstein cows using a test-day mixed model with the perspective of herd management // J. Dairy Sci. 2020. 103. doi.org/10.3168/jds.2019-17717.

10. Du C., Liangkang Nan, Lei Yan et al. Genetic Analysis of Milk Production Traits and Mid-Infrared Spectra in Chinese Holstein Population // Animals. 2020. 10 (1). 139. doi.org/10.3390/ani10010139.

11. Tiplady K.M., Lopdell T.J., Sherlock R.G. et al. Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins // J. Dairy Sci. 2022. Vol. 105. Iss. 12. P. 9763 – 9791. doi.org/10.3168/jds.2022-22089.

12. Hanuš O., Genčurová V., Zhang Y. et al. Milk acetone determination by the photometrical method after microdiffusion and via FT infra-red spectroscopy // J. Agrobiol. 2011. 28 (1): P. 33 – 48. doi:10.2478/v10146-011-0004-9.

13. Aguilar M., Hanigan M.D., Tucker H.A. et al. Cow and herd variation in milk urea nitrogen concentrations in lactating dairy cattle // J. Dairy Sci. 2012. 95. Р. 7261 – 7268. doi.org/10.3168/jds.2012-5582.

14. Bastin C., Théron L., Lainé A., Gengler N. On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs // J. Dairy Sci. 2016. 99 (5). P. 4080 – 4094. doi: 10.3168/jds.2015-10087.

15. Kostensalo J., Lidauer M., Aernouts B. et al. Short communication: Predicting blood plasma non-esterified fatty acid and beta-hydroxybutyrate concentrations from cow milk—addressing systematic issues in modelling // Animal. 2023. Vol. 17. Iss. 9. 100912. doi.org/10.1016/j.animal.2023.100912.

16. Buitenhuis A.J., Poulsen N.A. Estimation of heritability for milk urea and genetic correlations with milk production traits in 3 Danish dairy breeds // J. Dairy Sci. 2023, Vol. 106. P. 5562 – 5569.

17. Schwarz D., Diesterbeck U.S., König S. et al. Microscopic differential cell counts in milk for the evaluation of inflammatory reactions in clinically healthy and subclinically infected bovine mammary glands // J. Dairy Research. 2011. 78(4): 448 – 455. doi: 10.1017/S0022029911000574.

18. Schwarz D., Kleinhans S., Reimann G. et al. Investigation of dairy cow performance in different udder health groups defined based on a combination of somatic cell count and differential somatic cell count // Preventive Veterinary Medicine., 2020. 183: 105123. doi: 10.1016/j.prevetmed.2020.105123.

19. Schwarz D., Santschi D.E., Durocher J., Lefebvre D.M. Evaluation of the new differential somatic cell count parameter as a rapid and inexpensive supplementary tool for udder health management through regular milk recording // Preventive Veterinary Medicine. 2020. 181: 105079. doi: 10.1016/j.prevetmed.2020.105079.

20. Damm M., Holm C., Blaabjerg M., Novak B.M., Schwarz D. Differential somatic cell count—a novel method for routine mastitis screening in the frame of dairy herd improvement testing programs // J. Dairy Sci. 2017. 100 (6): P. 4926 – 4940. doi: 10.3168/jds.2016-12409.

21. Halasa T., Kirkeby C. Differential somatic cell count: value for udder health management // Frontiers in Veterinary Science. 2020. 7: 609055. doi: 10.3389/fvets.2020.609055.

22. Cole J.B, Wiggans G.R, Ma L. et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows // BMC Genomics. 2011. P. 1 – 17. URL: https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-408.

23. Buitenhuis B., Janss L.L., Poulsen N.A. et al. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle // BMC Genomics. 2014. 15 (1): 1112. doi: 10.1186/1471-2164-15-1112.

24. Ilie D.E., Mizeranschi A.E., Mihali C.V. et al. Genome-wide association studies for milk somatic cell score in Romanian dairy cattle // Genes (Basel). 2021. 12 (10): 1495. doi: 10.3390/genes12101495.

25. Jiang J., Ma L., Prakapenka D. et al. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle // Frontiers in Genetics. 2021. № 10. 412 р. doi.org/10.3389/fgene.2019.00412.

26. Zaalberg R.M., Shetty N., Janss L., Buitenhuis A.J. Genetic analysis of Fourier transform infrared milk spectra in Danish Holstein and Danish Jersey // J. Dairy Sci. 2019. 102 (1): 503 – 510. doi: 10.3168/jds.2018-14464.

27. Costa A., Egger-Danner C., Mészáros G. et al. Genetic associations of lactose and its ratios to other milk solids with health traits in Austrian Fleckvieh cows // J. Dairy Sci. 2019. 102. P. 4238 – 4248. doi.org/10.3168/jds.2018-15883.

28. Costa A., Lopez-Villalobos N., Visentin G. et al. Heritability and repeatability of milk lactose and its relationships with traditional milk traits, somatic cell score and freezing point in Holstein cows // Animal. 2019. 13. P. 909 – 916. doi.org/10.1017/S1751731118002094.

29. Costa A., Lopez-Villalobos N., Sneddon N.W. et al. Invited review: Milk lactose–Current status and future challenges in dairy cattle // J. Dairy Sci. 2019. 102. P. 5883 – 5898. doi.org/10.3168/jds.2018-15955.

30. Янчуков И.Н., Ермилов А.Н., Харитонов С.Н., Осадчая О.Ю. Основные параметры селекционной программы совершенствования популяции черно-пестрого скота московской области // Изв. ТСХА. 2011. № 6. С. 127 – 135.

31. Шульга Л.П. Селекционная и информационная составляющие молочного скотоводства России // Изв. Санкт-Петербургского гос. аграр. ун-та. 2016. № 43. С. 94 – 100.

32. Харитонов С.Н., Мельникова Е.Е., Осадчая О.Ю., Сермягин А.А. Динамика изменени основных показателей в популяции черно-пестрого скота Российской Федерации // Молоч. и мясн. скотоводство. 2018. № 7. С. 13 – 17.

33. Богатова О.В., Догарева Н.Г. Химия и физика молока : учеб. пособие. Оренбург: ГОУ ОГУ, 2004. 137 с.

34. Aernouts B., Polshin E., Lammertyn J., Saeys W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? // J. Dairy Sci. 2011. Vol. 94. Iss. 11. P. 5315 – 5329. doi.org/10.3168/jds.2011-4354.

35. Jensen R.G., Ferris A.M., Lammi-Keefe C.J. The composition of milk fat // J. Dairy Sci. 1991. Vol. 74. Iss. 9. P. 3228 – 3243. doi.org/10.3168/jds.S0022-0302(91)78509-3.

36. Palmquist D.L. Milk Fat: Origin of Fatty Acids and Influence of Nutritional Factors Thereon // Advanced Dairy Chemistry. 2007. Vol. 2: Lipids. P. 43 – 92 (801).

37. Mansson H.L. Fatty acids in bovine milk fat // Food Nutr. Res. 2008. 52: 10.3402. doi:10.3402/fnr.v52i0.1821.

38. Vargas-Bello-Pérez E., Garnsworthy P.C. Trans fatty acids and their role in the milk of dairy cows // Cien. Inv. Agr. 2013. 40 (3). P. 449 – 473.

39. Hein L., Sørensen L.P., Kargo M. et al. Genetic analysis of predicted fatty acid profiles of milk from Danish Holstein and Danish Jersey cattle populations // J. Dairy Sci. 2018. Vol. 101. P. 2148 – 2157. doi.org/10.3168/jds.2017-13225.

40. Buitenhuis B., Lassen J., Noel S.J. et al. Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle // Genet. Sel. Evol. 2019. Vol. 51: 23. doi.org/10.1186/s12711-019-0464-8.

41. Palombo V., Milanesi M., Sgorlon S. et al. Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays // J. Dairy Sci. 2018. Vol. 101. P. 11004 – 11019. doi.org/10.3168/jds.2018-14413.

42. Cruz V.A.R., Oliveira H.R., Brito L.F. et al. Genome-wide association study for milk fatty acids in Holstein cattle accounting for the DGAT1 gene effect // Animals. 2019. Vol. 9 (11): 997. doi.org/10.3390/ani9110997.

43. Shi L., Lu X., Liu L. et al A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population // BMC Genet. 2019. Vol. 20: 53. doi.org/10.1186/s12863-019-0755-7.

44. Bauman D.E., Griinari J.M. Nutritional regulation of milk fat synthesis // Annu. Rev. Nutr. 2003. 23: 203 – 27. doi: 10.1146/annurev.nutr.23.011702.073408.

45. Kliem K.E., Shingfield K.J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges // Eur. J. Lipid Sci. Technol. 2016. Vol. 118. Iss. 11. P. 1661 – 1683. doi.org/10.1002/ejlt.201400543.

46. Hanuš O., Samková E., Křížová L., Hasoňová L., Kala R. Role of fatty acids in milk fat and the influence of selected factors on their variability — a review // Molecules. 2018. 23 (7): 1636. doi: 10.3390/molecules23071636.

47. Сычева О.В. Молоко: качество, состав, свойства. Проблемы и решения : моногр. М.; Берлин: Директ-Медиа, 2014. 145 с.

48. Эйснер Ф.Ф. Племенная работа с молочным скотом. М.: Агропромиздат, 1986. 84 с.

49. Haile-Mariam M., Pryce J.E. Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems // J. Dairy Sci. 2017. Vol. 100. Iss. 5. P. 3754 – 3766. doi.org/10.3168/jds.2016-11952.

50. Roseler D.K., Ferguson J.D., Sniffen C.J., Herrema J. Dietary protein degradability effects on plasma and milk urea nitrogen and milk nonprotein nitrogen in Holstein cows // J. Dairy Sci. 1993. Vol. 76. Iss. 2. P. 525 – 534. doi.org/10.3168/jds.S0022-0302(93)77372-5.

51. Broderick G.A., Clayton M.K. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen // J. Dairy Sci. 1997. Vol. 80. Iss. 11. P. 2964 – 2971. doi.org/10.3168/jds.S0022-0302(97)76262-3.

52. Нарышкина Е.Н., Карликова Г.Г., Виноградова И.В., Гусев И.В. Изменение состава молока коров в период раздоя // Фундаментальные и прикладные аспекты кормления с.-х. животных и технологии кормов. Дубровицы, 2016. С. 355 – 360.

53. Ma L., Luo H., Brito L.F. et al. Estimation of genetic parameters and single-step genome-wide association studies for milk urea nitrogen in Holstein cattle // J. Dairy Sci. 2023. Vol. 106. Iss. 1. P. 352 – 363.

54. Luke T.D.W., S. Rochfort, W.J. Wales, et. al. Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra // J. Dairy Sci. 2018. Vol. 102. Iss. 2. Р. 1747 – 1760. doi.org/10.3168/jds.2018-15103.

55. Alemu T.W., Santschi D.E., Cue R.I., Duggavathi R. Reproductive performance of lactating dairy cows with elevated milk β-hydroxybutyrate levels during first 6 weeks of lactation // J. Dairy Sci. 2023. V.106 (7). P. 5165 – 5181. doi.org/10.3168/jds.2022-22406.

56. Нарышкина Е.Н., Карликова Г.Г., Виноградова И.В., Алексеев А.А., Черкасова А.В. Соматические клетки как фактор снижения молочной продуктивности коров // Пути продления продуктивной жизни молочных коров на основе оптимизации разведения, технологий содержания и кормления животных. Дубровицы, 2015. С. 73 – 77.

57. Нарышкина Е.Н., Сермягин А.А., Виноградова И.В., Хрипякова Е.Н. Влияние уровня содержания соматических клеток в молоке новотельных коров на показатели продуктивности // Пути продления продуктивной жизни молочных коров на основе оптимизации разведения, технологий содержания и кормления животных. Дубровицы, 2015. С. 69 – 73.

58. Сермягин А.А., Лашнева И.А., Косицин А.А. и др. Морфологический состав соматических клеток в молоке коров как критерий оценки здоровья молочной железы в связи с продуктивностью и компонентами молока // С.-х. биология. 2021. Т. 56. № 6. С. 1183 – 1198. doi: 10.15389/agrobiology.2021.6.1183rus.

59. Sermyagin A.A., Gladyr E.A., Kharzhau A.A. et al. 167 Genetic and genomic estimation for somatic cell score in relation with milk production traits of Russian Holstein dairy cattle // J. Dairy Sci. 2017. Vol. 95. Iss. 4. P. 82 – 83. doi: 10.2527/asasann.2017.167.

60. Pillai S.R., Kunze E., Sordillo L.M., Jayarao B.M. Application of differential inflammatory cell count as a tool to monitor udder health // J. Dairy Sci. 2001. Vol. 84 (6). P. 1413 – 1420. doi: 10.3168/jds.S0022-0302(01)70173-7.

61. Rivas A.L., Quimby F.W., Blue J., Coksaygan O. Longitudinal evaluation of bovine mammary gland health status by somatic cell counting, flow cytometry, and cytology // J. of Veterinary Diagnostic Investigation. 2001. 13 (5): 399 – 407. doi: 10.1177/104063870101300506.

62. Pilla R., Malvisi M., Snel G. et al. Differential Cell Count as an alternative method to diagnose dairy cow mastitis // J. Dairy Sci. 2013. Vol. 96. Р. 1653 – 1660. doi.org/10.3168/jds.2012-6298.

63. Sordillo L.M., Shafer-Weaver K., DeRosa D. Immunobiology of the mammary gland // J. Dairy Sci. 1997. 80 (8): 1851 – 1865. doi: 10.3168/jds.S0022-0302(97)76121-6.

64. Oviedo-Boyso J., Valdez-Alarcón J.J., Cajero-Juárez M. et al. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis // J. of Infection. 2007. 54 (4): 399 – 409. doi: 10.1016/j.jinf.2006.06.010.

65. Лашнева И.А., Косицин А.А., Сермягин А.А., Зиновьева Н.А. Полногеномный анализ ассоциаций с количеством соматических клеток и их дифференциацией по видам в молоке коров // Молоч. и мясн. скотоводство. 2022. № 6. С. 12 – 17. doi: 10.33943/MMS.2022.66.75.002.

66. Lee C., Wooding F., Kemp P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cow’s secretions, colostrum and milk from normal cows // J. of Dairy Research. 1980. 47 (1): 39 – 50. doi: 10.1017/S0022029900020860.

67. Pilla R., Schwarz D., König S., Piccinini R. Microscopic differential cell counting to identify inflammatory reactions in dairy cow quarter milk samples // J. Dairy Sci. 2012. 95 (8): 4410 – 4420. doi: 10.3168/jds.2012-5331.

68. Paape M.J., Mehrzad J., Zhao X., Detilleux J., Burvenich C. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocyte // J. of Mammary Gland Biology and Neoplasia. 2002. 7 (2): 109 – 121. doi: 10.1023/a:1020343717817.

69. Нормы и рационы кормления сельскохозяйственных животных: справ. пособие. / под ред. А.П. Калашникова и др. 3-е изд. М., 2003. 456 с.

70. Головин А.В., Аникин А.С., Некрасов Р.В., Первов Н.Г. Нормирование энергии для молочных коров // Достижения науки и техники АПК. 2013. № 3. С. 18 – 19.

71. Некрасов Р.В., Головин А.В., Аникин А.С., Первов Н.Г. Нормирование и организация кормления высокопродуктивных коров // Молоч. пром-сть. 2014. № 7. С. 26 – 28.

72. Крупин Е.О., Зухрабов М.Г., Шакиров Ш.К. Молочная продуктивность, состав и качество молока высокопродуктивных коров на фоне направленного регулирования обмена веществ // Ученые записки Казанской гос. акад. вет. медицины им. Н.Э. Баумана. 2010. Т. 203. С. 134 – 140.

73. Кудрявцева Е.Н., Толстова Д.А. Изменение состава и свойств молока коров за счет регулирования уровня жира в их рационах // Актуал. вопросы совершенствования технологии пр-ва и перераб. продукции сел. хоз-ва. 2018. № 20. С. 181 – 184.

74. Brady E.L., Kelly E.T., Lynch M.B. et al. The effect of concentrate feeding strategy and dairy cow genotype on milk production, pasture intake, body condition score and metabolic status under restricted grazing conditions // Livestock Science. 2022. Vol. 256. P. 1 – 11. doi.org/10.1016/j.livsci.2021.104815.

75. Горбатова К.К., Гунькова П.И. Биохимия молока и молочных продуктов : учебник. 4-е изд. СПб.: ГИОРД, 2010. 336 с.

76. Артемьева О.А., Никанова Д.А., Котковская Е.Н. и др. Мониторинг молока коров на наличие стафилококков и соматических клеток как предвестников мастита // Молоч. и мясн. скотоводство. 2016. № 4. С. 24 – 27.

77. Sermyagin A.A., Lashneva I.A., Ignatieva L.P. et al. Genome-wide association study for mirpredicted milk fatty acids composition in Russian Holstein cattle population // J. of Animal Science. 2021. Vol. 99 (S3). Р. 245 – 246. doi: 10.1093/jas/skab235.488.

78. Сермягин А.А., Белоус А.А., Корнелаева М.В. и др. Возможности использования инфракрасных спектров молока для прогнозирования функционального состояния и здоровья коров // Плем. работа в животноводстве Моск. обл. и г. Москвы (2017 г.). М., 2018. С. 11 – 22.

79. Weller J.I., Ezra E., Ron M. Invited review: A perspective on the future of genomic selection in dairy cattle // J. Dairy Sci. 2017. 100 (11): 8633 – 8644. doi: 10.3168/jds.2017-12879.

80. Nayeri S., Sargolzaei M., Abo-Ismail M.K. et al. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle // BMC Genetics. 2016. 17: 75. doi:10.1186/s12863-016-0386-1.

81. Huang W., Peñagaricano F., Ahmad K.R. et al. Association between milk protein gene variants and protein composition traits in dairy cattle // J. Dairy Sci. 2012. 95: 440 – 449. doi.org/10.3168/jds.2011-4757.

82. Saatchi M., Garrick D.J., Tait Jr R.G. et al. Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattle // BMC Genomics. 2013. 14: 730. URL: http://www.biomedcentral.com/1471-2164/14/730.

83. Ковальчук С.Н. Жирнокислотный состав мышечной ткани овец: фенотипическая вариабельность, наследуемость, гены-кандидаты : (обзор) // С.-х. биология. 2021. Т. 56. № 6. С. 1049 – 1062.

84. Сивкин Н.В., Стрекозов Н.И. Оценка количества соматических клеток в молоке коров в период лактации // Молоч. пром-сть. 2010. № 11. С. 71 – 72.

85. Filipejová T., Kováčik J., Kirchnerová K., Foltýs V. Changes in milk composition as a result of metabolic disorders of dairy cows. // Potravinárstvo. 2011. 5 (1): P. 10 – 16. doi:10.5219/113.

86. Jonkus D., Paura L. Estimation of Genetic Parameters for Milk Urea and Milk Production Traits of Latvian Brown Cows // Agriculturae Conspectus Scientificus. 2011. 76 (3): 227 – 230.

87. Czajkowska A., Sitkowska B., Piwczynski D., Wójcik P., Mroczkowski S. Genetic and environmental determinants of the urea level in cow’s milk // Arch. Anim. Breed. 2015. 58: 65 – 72. doi:10.5194/aab-58-65-2015.

88. Rzewuska K., Strabel T. The genetic relationship between reproduction traits and milk urea concentration // Animal Science Papers and Reports. 2015. 33 (3): 243 – 256.

89. Henno M., Ots M., Joudu I., Kaart T., Kart O. Factors affecting the freezing point stability of milk from individual cows // International Dairy Journal. 2008. 18: 210 – 215. doi:10.1016/j.idairyj.2007.08.006.

90. Otwinowska-Mindur A., Ptak E., Grzesiak A. Factors affecting the freezing point of milk from Polish Holstein-Friesian cows // Ann. Anim. Sci. 2017. 17 (3): 873 – 885. doi: 10.1515/aoas-2016-0088.

91. Yuan Z., Chu G., Dan Y. et al. BRCA1: a new candidate gene for bovine mastitis and its association analysis between single nucleotide polymorphisms and milk somatic cell score // Molecular Biology Reports. 2012. Vol. 39. № 6. P. 6625 – 6631.

92. Sahana G., Guldbrandtsen B., Thomsen B. et al. Genome-wide association study using highdensity single nucleotide polymorphism arrays and whole genome sequences for clinical mastitis traits in dairy cattle // J. Dairy Sci. 2014. Vol. 97. № 11. P.7258 – 7275.

93. Tiezzi F., Parker-Gaddis K.L., Cole J.B., Clay J.S., Maltecca C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix reweighting procedure // PLoS One. 2015. Vol. 10. №. 2. e0114919.

94. Wang X., Ma P., Liu J. et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility // BMC Genet. 2015. Vol. 16. P. 111.

95. Wu X., Lund M.S., Sahana G. et al. Association analysis for udder health based on SNP-panel and sequence data in Danish Holsteins // Genet. Sel. Evol. 2015. Vol. 47. №. 1. P. 50.

96. Zhang Q., Guldbrandtsen B., Thomasen J.R., Lund M.S., Sahana G. Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds // J. Dairy Sci. 2016. Vol. 99. № 9. P. 7289 – 7298.

97. Yang F., Chen F., Li L. et al. GWAS using 2b-RAD sequencing identified three mastitis important SNPs via two-stage association analysis in Chinese Holstein cows // bioRxiv. 2018. P. 434340.

98. Welderufael B.G., Løvendahl P., de Koning D.J., Janss L.L.G., Fikse W.F. Genome-Wide Association Study for Susceptibility to and Recoverability from Mastitis in Danish Holstein Cows // Front. Genet. 2018. Vol. 9. P. 141.

99. Fraser R.S., Lumsden J.S., Lillie B.N. Identification of polymorphisms in the bovine collagenous lectins and their association with infectious diseases in cattle // Immunogenetics. 2018. Vol. 70. № 8. P. 533 – 546.

100. Cai Z., Guldbrandtsen B., Lund M.S. et al. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle // BMC Genomics. 2018. Vol. 19. P. 656.

101. Kirsanova E., Heringstad B., Lewandowska-Sabat A., Olsaker I. Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle: combining genome-wide association study, topologically associated domains and pathway enrichment analysis // Anim. Genet. 2020. Vol. 51. № 1. P. 22 – 31.

102. Chen R., Wang Z., Yang Z. et al. Association of IL8-105G/A with mastitis somatic cell score in Chinese Holstein dairy cows // Anim. Biotechnol. 2015. Vol. 26. № 2. P. 143 – 147.

103. Wang C., Liu M., Li Q. et al. Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits // Vet. Immunol. Immunopathol. 2011. Vol. 139. P. 229 – 236.

104. Liu J., Ju Z., Li Q. et al. Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle // Immunogenetics. 2011. Vol. 63. P. 727 – 742.

105. Zhao Z.L., Wang C.F., Li Q.L. et al. Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins // Genet. Mol. Res. 2012. Vol. 11. № 4. P. 3744 – 3754.

106. Sodeland M., Kent M.P., Olsen H.G. et al. Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle // Anim. Genet. 2011. Vol. 42. P. 457 – 465.

107. Abdel-Shafy H., Bortfeldt R.H., Tetens J., Brockmann G.A. Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle // Genet. Sel. Evol. 2014. Vol. 46. P.35.

108. Bauman D.E., Griinari J.M. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome // Livestock Production Science. 2001. 70 (1): P. 15 – 29. doi: 10.1016/S0301-6226(01)00195-6.

109. Hansen P.W., Holroyd S.E. Development and application of Fourier transform infrared spectroscopy for detection of milk adulteration in practice // International Journal of Dairy Technology. 2019. Vol. 72. Iss. 3. Р. 321 – 331. doi:10.1111/1471-0307.12592.

110. Sturaro A., Tiezzi F., Penasa M. et al. Study of milk coagulation properties in multibreed italian dairy herds // Acta Agriculturae Slovenica. 2012. 100. 89 – 92.

111. Visentin G., McDermott A., McParland S. et al. Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows // J. Dairy Sci. 2015. 201598: 6620 – 6629. doi.org/10.3168/jds.2015-9323.

112. Ho P.N., Bonfatti V., Luke T.D.W., Pryce J.E. Classifying the fertility of dairy cows using milk mid-infrared spectroscopy // J. Dairy Sci. 2020. 102: 10460 – 10470. doi.org/10.3168/jds.2019-16412.

113. Tacoma R., Fields J., Ebenstein D.B., Lam Y.W., Greenwood S.L. Characterization of the bovine milk proteome in early-lactation Holstein and Jersey breeds of dairy cows // J Proteomics. 2016. 130: 200 – 210. doi:10.1016/j.jprot.2015.09.024.

114. Gottardo P., Tiezzi F., Penasa M. et al. Milk fatty acids predicted by midinfrared spectroscopy in mixed dairy herds // Agricultural Conspectus Scientificus. 2013. 78 (3): 263 – 266.

115. Soyeurt H., Dardenne P., Dehareng F. et al. Estimating Fatty Acid Content in Cow Milk Using Mid-Infrared Spectrometry // J. Dairy Sci. 2006. 89: 3690 – 3695.

116. Lopez-Villalobos N., Spelman R.J., Melis J. et al. Genetic correlations of milk fatty acid contents predicted from milk mid-infrared spectra in New Zealand dairy cattle // J. Dairy Sci. 2020. Vol. 103. Iss. 8. P. 7238 – 7248. doi.org/10.3168/jds.2019-17971.

117. Vanlierde A., Vanrobays M.-L., Dehareng F. et al. Hot topic: Innovative lactation-stagedependent prediction of methane emissions from milk mid-infrared spectra // J. Dairy Sci. 2015. Vol. 98. Iss. 8. Р. 5740 – 5747. doi.org/10.3168/jds.2014-8436.

118. Shetty N., Difford G., Lassen J., Løvendahl P., Buitenhuis A.J. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk // J. Dairy Sci. 2017. 100: 9052 – 9060. doi.org/10.3168/jds.2017-13014.

119. Vanrobays M.L., Bastin C., Vandenplas J. et al. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk midinfrared spectra // J. Dairy Sci. 2015. 99 (9): 7247 – 7260. doi: 10.3168/jds.2015-10646.

120. Laine A., Bastin C., Théron L., Gengler N. On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs // J. Dairy Sci. 2015. 99 (5). doi:10.3168/jds.2015-10087.


Review

For citations:


Lasneva I.A., Sermyagin A.A. Use of milk biomarkers to assess productive qualities and physiological status of cows. Ernst Journal of Animal Science. 2025;(3):52-73. (In Russ.) https://doi.org/10.25687/3034-493X.2025.4.3.004

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-493Х (Online)