Modern advances in silkworm (Bombyx mori) genomics: from molecular markers to complete genome
https://doi.org/10.25687/3034-493X.2025.4.3.003
Abstract
The silkworm (Bombyx mori) serves not only as the foundation of traditional sericulture but also as a unique model for genomic research among lepidopterans. This article provides a comprehensive analysis of the evolution of genomic studies of B. mori, covering the period from the initial work with molecular markers to the creation of a complete telomere-to-telomere genome assembly in 2024. Particular attention is paid to the development of genetic analysis methods: from early approaches (RAPD, RFLP, AFLP) to modern highly polymorphic microsatellite markers and whole-genome sequencing. The successes in identifying genes controlling key economically valuable traits are analyzed in detail, including genes for productivity (BmAbl1, BmVps13d), silk gland development (BmSGF1, BmPriS), metamorphosis (BmShadow, BR-C), cocoon coloration (Bm-re, Gn-Str cluster), and reproduction (BmSer1, BmNap). A significant achievement has been the creation of integrative databases and gene expression atlases, providing a foundation for the systems biology of the silkworm. Current understanding of the molecular mechanisms of domestication and breeding improvement is summarized, including the identified candidate genes for selective selection associated with the nervous system and metabolism. Significant progress in studying the genetic basis of adaptation, including the mechanisms of diapause and stress resistance, is noted. The obtained data are of fundamental importance for understanding insect evolution and have practical applications in breeding programs. Special emphasis is placed on promising research directions, including functional genomics, the study of regulatory systems, and the creation of reference transcriptomes. The work demonstrates how genomic advances are transforming traditional breeding, paving the way for the targeted development of silkworm breeds with desired traits.
About the Authors
O. A. KoshkinaRussian Federation
Moscow Region
T. E. Deniskova
Russian Federation
Moscow Region
N. A. Zinovieva
Russian Federation
Moscow Region
References
1. Vijayan K., Nair C.V., Urs S.R. Assessment of genetic diversity in the tropical mulberry silkworm (Bombyx mori L.) with mtDNA-SSCP and SSR markers // Emirates Journal of Food and Agriculture. 2010. Vol. 22. P. 71 – 83.
2. Staykova T.A. Genetically-determined polymorphism of nonspecific esterases and phosphoglucomutase in eight introduced breeds of the silkworm, Bombyx mori, raised in Bulgaria // J. of Insect Science. 2008. Vol. 8. P. 18.
3. Nagaraju J., Klimenko V., Couble P. The silkworm Bombyx mori, a model genetic system // Encyclopedia of Genetics / ed. by E. Reeves. London: Fitzroy Dearborn, 2000. P. 219 – 239.
4. Ganesh P., Selvisabhanayakam P., Balasundaram D., Pradhap M., Vivekananthan T., Mathivanan V. Effect of food supplementation with silver nanoparticles (AgNps) on feed efficacy of silkworm, Bombyx mori (L.) (Lepidoptera: Bombycidae) // International Journal of Research in Biological Sciences. 2012. Vol. 2. P. 60 – 67.
5. Nagaraju J., Reddy K.D., Nagaraja G.M., Sethuraman B.N. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori // Heredity. 2001. Vol. 86. P. 588 – 597.
6. Liu Y.Q., Qin L., Li Y.P. et al. Comparative genetic diversity and genetic structure of three Chinese silkworm species Bombyx mori L. (Lepidoptera: Bombycidae), Antheraea pernyi Guérin-Meneville and Samia cynthia ricini Donovan (Lepidoptera: Saturniidae) // Neotropical Entomology. 2010. Vol. 39. P. 967 – 976.
7. Kim K. Y., Lee E. M., Lee I. H. et al. Intronic sequences of the silkworm strains of Bombyx mori (Lepidoptera: Bombycidae): High variability and potential for strain identification // European Journal of Entomology. 2008. Vol. 105. P. 73 – 80.
8. Velu D., Ponnuvel K.M., Muthulakshmi M., Sinha R.K., Qadri S.M. Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using inter simple sequence repeat (ISSR) markers // J. of Genetics and Genomics. 2008. Vol. 35, № 5. P. 291 – 297.
9. Goldsmith M.R., Shimada T., Abe H. The genetics and genomics of the silkworm, Bombyx mori // Annual Review of Entomology. 2005. Vol. 50. P. 71 – 100.
10. Jingade A.H., Vijayan K., Somasundaram P., Srivasababu G.K., Kamble C. K. A review of the implications of heterozygosity and inbreeding on germplasm biodiversity and its conservation in the silkworm, Bombyx mori // J. of Insect Science. 2011. Vol. 11. P. 8.
11. Tomita M., Munetsuna H., Sato T. et al. Transgenic silkworm produce recombinant human type III procollagen in cocoons // Nature Biotechnology. 2003. Vol. 21. P. 52 – 56.
12. Gaviria D.A., Aguilar E., Serrano H.J., Alegria A.H. DNA fingerprinting using AFLP markers to search for markers associated with yield attributes in the silkworm, Bombyx mori // J. of Insect Science. 2006. Vol. 6. P. 15.
13. Hussain S., Alex R., Alyethodi R. R. et al. Development of a RAPD marker-based classification criterion for quality semen production in Holstein crossbred bulls // Reproduction in Domestic Animals. 2021. Vol. 56. № 5. P. 736 – 743. DOI: 10.1111/rda.13912.
14. Nesteruk L. V., Makarova N. N., Evsyukov A. N. et al. Сравнительная оценка генофондов пород овец с использованием ISSR-анализа // Генетика. 2016. Т. 52. № 3. С. 346 – 356.
15. Абдельманова А.С., Денискова Т.Е., Петров С.Н. и др. Оценка динамики генетического разнообразия популяций оренбургской породы коз с использованием микросателлитных маркеров // Достижения науки и техники АПК. 2024. Т. 38. № 9. С. 50 – 56. DOI: 10.53859/02352451_2024_38_9_50.
16. Miguel M.A., Mingala C.N. Screening of Pig (Sus scrofa) Bactericidal Permeability-Increasing Protein (BPI) Gene as Marker for Disease Resistance // Animal Biotechnology. 2019. Vol. 30. № 2. P. 146 – 150. DOI: 10.1080/10495398.2018.1450266.
17. Herbergs J., Siwek M., Crooijmans R.P., Van der Poel J.J., Groenen M.A. Multicolour fluorescent detection and mapping of AFLP markers in chicken (Gallus domesticus) // Animal Genetics. 1999. Vol. 30. № 4. P. 274 – 285. DOI: 10.1046/j.1365-2052.1999.00494.x.
18. Nagaraju J., Reddy K.D., Nagaraja G.M., Sethuraman B.N. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori // Heredity. 2001. Vol. 86. № 5. P. 588 – 597. DOI: 10.1046/j.1365-2540.2001.00861.x.
19. Promboon A., Shimada T., Fujiwara H., Kobayashi M. Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori // Genetical Research. 1995. Vol. 66. P. 1 – 7.
20. Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers // Genetics. 1998. Vol. 150. P. 1513 – 1525.
21. Abe H., Sugasaki T., Kanehara M. et al. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori // Genes & Genetic Systems. 2000. Vol. 75. № 2. P. 93 – 96.
22. Li M.W., Yao Q., Hou C.X., Lu C., Chen K.P. Studies on RAPD markers linked the densonucleosis refractoriness gene, nsd-Z in silkworm, Bombyx mori L. // Sericologia. 2001. Vol. 41. № 3. P. 409 – 415.
23. Yao Q., Li M.W., Wang Y. et al. Screening of molecular markers for NPV resistance in Bombyx mori L. (Lep.: Bombycidae) // J. of Applied Entomology. 2003. Vol. 127. P. 134 – 136.
24. Tan Y.D., Wan C.L., Zhu Y.F. et al. An amplified fragment length polymorphism map of the silkworm // Genetics. 2001. Vol. 157. P. 1277 – 1284.
25. Lu C., Li B., Zhao A., Xiang Z. QTL mapping of economically important traits in silkworm (Bombyx mori) // Science in China Series C: Life Sciences. 2004. Vol. 47. № 5. P. 477 – 484.
26. Shi J., Heckel D.G., Goldsmith M.R. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms // Genetical Research. 1995. Vol. 66. P. 109 – 126.
27. Reddy K.D., Abraham E.G., Nagaraju J. Microsatellites in the silkworm, Bombyx mori: abundance, polymorphism, and strain characterization // Genome. 1999. Vol. 42. P. 1057 – 1065.
28. Miao X.X., Xu S.J., Li M.H. et al. Simple sequence repeat-based consensus linkage map of Bombyx mori // Proceedings of the National Academy of Sciences of the United States of America. 2005. Vol. 102. P. 16303 – 16308.
29. Nagaraju J., Reddy K.D., Nagaraja G.M., Sethuraman B.N. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori // Heredity. 2001. Vol. 86. P. 588 – 597.
30. Lu C., Yu H.S., Xiang Z.H. Molecular systematic studies on Chinese mandarina silkworm (Bombyx mandarina M.) and domestic silkworm (Bombyx mori L.) // Scientia Agricultura Sinica. 2002. Vol. 35. № 1. P. 94 – 101.
31. Chatterjee S. N., Mohandas T. P. Identification of ISSR markers associated with productivity traits in silkworm, Bombyx mori L. // Genome. 2003. Vol. 46. № 3. P. 438 – 447.
32. Li M.W., Hou C.X., Miao X.X., Xu A.Y., Huang Y.P. Analyzing genetic relationship in Bombyx mori using inter simple sequence repeat amplification // J. of Economic Entomology. 2007. Vol. 100. P. 202 – 208.
33. Velu D., Ponnuvel K.M., Muthulakshmi M., Sinha R.K., Qadri S.M. Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using inter simple sequence repeat (ISSR) markers // J. of Genetics and Genomics. 2008. Vol. 35. № 5. P. 291 – 297. DOI: 10.1016/S1673-8527(08)60042-9.
34. Sharma P.C., Grover A., Kahl G. Mining microsatellites in eukaryotic genomes // Trends in Biotechnology. 2007. Vol. 25. P. 490 – 498.
35. Romero C., Pedryc A., Muñoz V., Llácer G., Badenes M. L. Genetic diversity of different apricot geographical groups determined by SSR markers // Genome. 2003. Vol. 46. P. 244 – 252.
36. Tóth G., Gáspári Z., Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis // Genome Research. 2000. Vol. 10. P. 967 – 981.
37. Mita K., Kasahara M., Sasaki S. et al. The genome sequence of silkworm, Bombyx mori // DNA Research. 2004. Vol. 11. P. 27 – 35.
38. Prasad M. D., Muthulakshmi M., Madhu M. et al. Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species // Genetics. 2005. Vol. 169. P. 197 – 214.
39. Koike Y., Mita K., Suzuki M. G. et al. Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog // Molecular Genetics and Genomics. 2003. Vol. 269. № 1. P. 137 – 149. DOI: 10.1007/s00438-003-0822-6.
40. Mita K., Morimyo M., Okano K. et al. The construction of an EST database for Bombyx mori and its application // Proceedings of the National Academy of Sciences of the United States of America. 2003. Vol. 100. № 24. P. 14121 – 14126. DOI: 10.1073/pnas.2234984100.
41. Li M., Shen L., Xu A. et al. Genetic diversity among silkworm (Bombyx mori L., Lep., Bombycidae) germplasms revealed by microsatellites // Genome. 2005. Vol. 48. № 5. P. 802 – 810. DOI: 10.1139/g05-053.
42. Miao X.X., Xu S.J., Li M.H. et al. Simple sequence repeat-based consensus linkage map of Bombyx mori // Proceedings of the National Academy of Sciences of the United States of America. 2005. Vol. 102. № 45. P. 16303 – 16308. DOI: 10.1073/pnas.0507794102.
43. Xia Q., Zhou Z., Lu C. et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori) // Science. 2004. Vol. 306. P. 1937 – 1940.
44. International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori // Insect Biochemistry and Molecular Biology. 2008. Vol. 38. № 12. P. 1036 – 1045. DOI: 10.1016/j.ibmb.2008.11.004.
45. Furdui E. M., Mărghitaş L. A., Dezmirean D. S. et al. Genetic characterization of Bombyx mori (Lepidoptera: Bombycidae) breeding and hybrid lines with different geographic origins // J. of Insect Science. 2014. Vol. 14. P. 211. DOI: 10.1093/jisesa/ieu073.
46. Xia Q., Guo Y., Zhang Z. et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx) // Science. 2009. Vol. 326. № 5951. P. 433 – 436. DOI: 10.1126/science.1176620.
47. Kawamoto M., Jouraku A., Toyoda A. et al. High-quality genome assembly of the silkworm, Bombyx mori // Insect Biochemistry and Molecular Biology. 2019. Vol. 107. P. 1 – 8.
48. Kawamoto M., Kiuchi T., Katsuma S. SilkBase: an integrated transcriptomic and genomic database for Bombyx mori and related species // Database: The J. of Biological Databases and Curation. 2022. Vol. 2022. P. baac040. DOI: 10.1093/database/baac040.
49. Li W.S., Xiao Y.D., Liu J.Q. et al. The T2T Genome of the Domesticated Silkworm Bombyx mori // International Journal of Molecular Sciences. 2024. Vol. 25. № 22. P. 12341. DOI: 10.3390/ijms252212341.
50. Xiao R., Yuan Y., Zhu F. et al. Transcriptomics and proteomics-based analysis of heterosis on main economic traits of silkworm, Bombyx mori // J. of Proteomics. 2020. Vol. 229. P. 103941. DOI: 10.1016/j.jprot.2020.103941.
51. Xiao Y., Li L.L., Bibi A. et al. Role of Bm30kc6 gene in cell apoptosis and the silk gland degradation signaling pathway in Bombyx mori L. // Archives of Insect Biochemistry and Physiology. 2020. Vol. 105. № 3. P. e21741. DOI: 10.1002/arch.21741.
52. Zhang Y., Xing Z., Dong H. et al. SV2B is a crucial factor for early larval development in the silkworm, Bombyx mori // Insect Science. 2025. Advance online publication. DOI: 10.1111/1744-7917.70070.
53. Zhu J., Chen Y.R., Geng T. et al. A 14-amino acids deletion in BmShadow results to nonmoult on the 2nd instar in the bivoltine silkworm, Bombyx mori // Gene. 2021. Vol. 777. P. 145450. DOI: 10.1016/j.gene.2021.145450.
54. Mei X., Huang T., Chen A. et al. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori // Frontiers in Physiology. 2024. Vol. 15. P. 1298869. DOI: 10.3389/fphys.2024.1298869.
55. Li C., Zuo W., Tong X. et al. Whole-genome resequencing reveals loci under selection during silkworm improvement // J. of Animal Breeding and Genetics. 2021. Vol. 138. № 3. P. 278 – 290. DOI: 10.1111/jbg.12513.
56. Hou S., Tao C., Yang H., Cheng T., Liu C. Sage controls silk gland development by regulating Dfd in Bombyx mori // Insect Biochemistry and Molecular Biology. 2021. Vol. 132. P. 103568. DOI: 10.1016/j.ibmb.2021.103568.
57. Luan Y., Li C., Zuo W. et al. Gene mapping reveals the association between tyrosine protein kinase Abl1 and the silk yield of Bombyx mori // Animal Genetics. 2021. Vol. 52. № 3. P. 342 – 350. DOI: 10.1111/age.13052.
58. Zhao L., Sun X., Wang X. et al. Bombyx mori Vps13d is a key gene affecting silk yield // PLoS One. 2022. Vol. 17. № 7. P. e0270840. DOI: 10.1371/journal.pone.0270840.
59. Zhang X., Dong Z., Guo K. et al. Identification and functional study of fhx-L1, a major silk component in Bombyx mori // International Journal of Biological Macromolecules. 2023. Vol. 232. P. 123371. DOI: 10.1016/j.ijbiomac.2023.123371.
60. Sun L., Sun B., Chen L., Ge Q., Chen K. Identification of genes associated with the silk gland size using multi-omics in silkworm (Bombyx mori) // Insect Molecular Biology. 2024. Vol. 33. № 1. P. 1 – 16. DOI: 10.1111/imb.12870.
61. Yang H., Xu Y., Yuan Y. et al. Identification and function of the Pax gene Bmgsb in the silk gland of Bombyx mori // Insect Molecular Biology. 2024. Vol. 33. № 3. P. 173 – 184. DOI: 10.1111/imb.12886.
62. Ou Y., Luo Q., Zeng W. et al. BmHR3 Is Essential for Silk Gland Development and Silk Protein Synthesis in Silkworms (Bombyx mori) // Insects. 2025. Vol. 16. № 4. P. 369. DOI: 10.3390/insects16040369.
63. Tang X., Liu H., Wang X. et al. BmSLC7A5 is essential for silk protein synthesis and larval development in Bombyx mori // Insect Science. 2024. Vol. 31. № 5. P. 1425 – 1439. DOI: 10.1111/1744-7917.13314.
64. Chen Y., Li J., Niu K. et al. G-quadruplex is involved in the regulation of BmSGF1 expression in the Silkworm, Bombyx mori // Insect Science. 2024. Vol. 31. № 5. P. 1440 – 1452. DOI: 10.1111/1744-7917.13334.
65. Liu Y., Li Z., Zhou L. et al. BmPriS promotes silk gland growth by regulating endoreplication in silkworm // International Journal of Biological Macromolecules. 2025. Vol. 320. Pt 1. P. 145640. DOI: 10.1016/j.ijbiomac.2025.145640.
66. Luo J.W., An E.X., Lu Y.R. et al. Molecular basis of the silkworm mutant rel causing red egg color and embryonic death // Insect Science. 2021. Vol. 28. № 5. P. 1290 – 1299. DOI: 10.1111/1744-7917.12871.
67. Tomihara K., Satta K., Matsuzaki S. et al. Mutations in a β-group of solute carrier gene are responsible for egg and eye coloration of the brown egg 4 (b-4) mutant in the silkworm, Bombyx mori // Insect Biochemistry and Molecular Biology. 2021. Vol. 137. P. 103624. DOI: 10.1016/j.ibmb.2021.103624.
68. Osanai-Futahashi M., Uchino K., Tamura T., Sezutsu H. The red egg gene as a novel effective egg color marker for silkworm transgenesis // Insect Biochemistry and Molecular Biology. 2022. Vol. 143. P. 103728. DOI: 10.1016/j.ibmb.2022.103728.
69. Lu Y., Luo J., An E. et al. Deciphering the Genetic Basis of Silkworm Cocoon Colors Provides New Insights into Biological Coloration and Phenotypic Diversification // Molecular Biology and Evolution. 2023. Vol. 40. № 2. P. msad017. DOI: 10.1093/molbev/msad017.
70. Kim S.W., Park J.S., Kim M.J. et al. Complete mitochondrial genome of the highly fecund Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae) strain Jam 146 // Mitochondrial DNA Part B: Resources. 2021. Vol. 6. № 8. P. 2278 – 2280. DOI: 10.1080/23802359.2021.1920860.
71. Kim M.J., Park J.S., Kim H. et al. Phylogeographic Relationships among Bombyx mandarina (Lepidoptera: Bombycidae) Populations and Their Relationships to B. mori Inferred from Mitochondrial Genomes // Biology. 2022. Vol. 11. № 1. P. 68. DOI: 10.3390/biology11010068.
72. Yokoi K., Tsubota T., Jouraku A., Sezutsu H., Bono H. Reference Transcriptome Data in Silkworm Bombyx mori // Insects. 2021. Vol. 12. № 6. P. 519. DOI: 10.3390/insects12060519.
73. Tang M., He S., Gong X. et al. High-Quality de novo Chromosome-Level Genome Assembly of a Single Bombyx mori With BmNPV Resistance by a Combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing // Frontiers in Genetics. 2021. Vol. 12. P. 718266. DOI: 10.3389/fgene.2021.718266.
74. Ma Y., Sun Q., Huang L. et al. Genome-wide survey and characterization of transcription factors in the silk gland of the silkworm, Bombyx mori // PLoS One. 2021. Vol. 16. № 11. P. e0259870. DOI: 10.1371/journal.pone.0259870.
75. Guo M.P., Qian W.L., He X.C. et al. Genome-wide identification of target genes for transcription factor BR-C in the silkworm, Bombyx mori // Insect Science. 2021. Vol. 28. № 6. P. 1530 – 1540. DOI: 10.1111/1744-7917.12893.
76. Gul I., Kausar S., You Q. et al. Identification and the immunological role of two Nimrod family genes in the silkworm, Bombyx mori // International Journal of Biological Macromolecules. 2021. Vol. 193. Pt A. P. 154 – 165. DOI: 10.1016/j.ijbiomac.2021.10.083.
77. Liu F.F., Liu Z., Li H. et al. CTL10 has multiple functions in the innate immune responses of the silkworm, Bombyx mori // Developmental and Comparative Immunology. 2022. Vol. 127. P. 104309. DOI: 10.1016/j.dci.2021.104309.
78. Xu X., Wang Y., Chen J. et al. Mutation of Serine protease 1 Induces Male Sterility in Bombyx mori // Frontiers in Physiology. 2022. Vol. 13. P. 828859. DOI: 10.3389/fphys.2022.828859.
79. Yang X., Chen D., Zheng S. et al. BmHen1 is essential for eupyrene sperm development in Bombyx mori but PIWI proteins are not // Insect Biochemistry and Molecular Biology. 2022. Vol. 151. P. 103874. DOI: 10.1016/j.ibmb.2022.103874.
80. Liu X., Zhang L., Zhang N. et al. CRISPR/Cas9-mediated Nap knockout affects female reproduction and egg shape in Bombyx mori // Insect Molecular Biology. 2024. Vol. 33. № 6. P. 722 – 731. DOI: 10.1111/imb.12937.
81. Chu J., Zhao M., Hu X. et al. Soluble Guanylate Cyclase α1 Gene Influences Egg-Laying Amount and Hatching Rate in Bombyx mori // Archives of Insect Biochemistry and Physiology. 2024. Vol. 117. № 1. P. e22153. DOI: 10.1002/arch.22153.
82. Xing Z., Lu T., Deng Y. et al. DGAT1-mediated lipid metabolism is essential for female reproduction in the silkworm, Bombyx mori // Pest Management Science. 2025. Advance online publication. DOI: 10.1002/ps.70118.
83. Homma S., Murata A., Ikegami M. et al. Circadian Clock Genes Regulate Temperature-Dependent Diapause Induction in Silkworm Bombyx mori // Frontiers in Physiology. 2022. Vol. 13. P. 863380. DOI: 10.3389/fphys.2022.863380.
84. Tobita H., Kiuchi T. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori // Insect Biochemistry and Molecular Biology. 2024. Vol. 172. P. 104153. DOI: 10.1016/j.ibmb.2024.104153.
85. Fan B., Chen Y., Yasen A. et al. BmINR and BmAC6 genes involve in diapause regulation via the insulin/IGF signaling pathway in the silkworm (Bombyx mori) // Gene. 2023. Vol. 881. P. 147626. DOI: 10.1016/j.gene.2023.147626.
86. Guo H., Chen F., Zhou M. et al. CRISPR-Cas9-Mediated Mutation of Methyltransferase METTL4 Results in Embryonic Defects in Silkworm Bombyx mori // International Journal of Molecular Sciences. 2023. Vol. 24. № 4. P. 3468. DOI: 10.3390/ijms24043468.
87. Liu Z., Li C., Yang W. et al. The Bombyx mori singed Gene Is Involved in the High-Temperature Resistance of Silkworms // Insects. 2024. Vol. 15. № 4. P. 264. DOI: 10.3390/insects15040264.
Review
For citations:
Koshkina O.A., Deniskova T.E., Zinovieva N.A. Modern advances in silkworm (Bombyx mori) genomics: from molecular markers to complete genome. Ernst Journal of Animal Science. 2025;(3):41-51. (In Russ.) https://doi.org/10.25687/3034-493X.2025.4.3.003







