Preview

Успехи наук о животных

Расширенный поиск

Современные методы исследования ферментации в рубце in vitro

https://doi.org/10.25687/3034-493X.2025.4.3.005

Аннотация

Изучение ферментативных процессов, происходящих в рубце, представляет собой биотехнологический инструмент, позволяющим в краткосрочной перспективе понять физиологические аспекты жвачных животных, связанные с современными проблемами, такими как поиск новых источников питания, минимизация выбросов парниковых газов, образующихся при ферментации. Тип ферментации в рубце определяет то состояние процесса, при котором водород (Н2) становится доступным для анаэробного брожения и включается в компоненты, используемые животным, или теряется с метаном (CH4). Несмотря на то, что методы in vivo являются золотым стандартом в определении газообразования в рубце, они не способны объяснить кинетику выработки ферментативных газов, в том числе метана. Цель статьи — описать основные ферментативные процессы в рубце жвачных животных и современные in vitro системы их регистрации. В обзоре также рассматриваются передовые, полностью автоматизированные устройства для определения газов методом in vitro в режиме реального времени, что является технологически ценным инструментом для оценки качества кормов и выбросов газообразных веществ, в том числе метана в исследованиях питания жвачных животных, и дается краткая характеристика современных ферментативных систем in vitro как зарубежных, так и отечественных разработок. По мере роста общественного интереса к благополучию животных научные исследования все больше сосредотачиваются на разработке менее инвазивных методов, таких как методы in vitro, для точного измерения выработки метана жвачными животными.

Об авторах

А. А. Зеленченкова
ФГБНУ ФИЦ ВИЖ им. Л.К. Эрнста
Россия

Московская обл.



Н. В. Боголюбова
ФГБНУ ФИЦ ВИЖ им. Л.К. Эрнста
Россия

Московская обл.



Список литературы

1. Yeoman C.J., White B.A. Gastrointestinal tract microbiota and probiotics in production animals // Annu Rev Anim Biosci. 2014. Vol. 2. P. 469 – 486. DOI: 10.1146/annurev-animal-022513-114149.

2. Cammack K.M., Austin K.J., Lamberson W.R. et al. RUMINNAT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production // J. Anim. Sci. 2018. Vol. 96. Iss. 2. P. 752 – 770. DOI: 10.1093/jas/skx053.

3. Eisler M.C., Lee M.R., Tarlton J.F. et al. Agriculture: steps to sustain-able livestock // Nature. 2014. Vol. 507. P. 32 – 34. DOI: 10.1038/507032a.

4. Castillo C., Hernández J. Ruminal Fistulation and Cannulation: A Necessary Procedure for the Advancement of Biotechnological Research in Ruminants // Animals (Basel). 2021. Vol. 11. Iss.7. P. 13. DOI: 10.3390/ani11071870.

5. Harmon D.L., Richards C.J. Considerations for gastrointestinal cannulations in ruminants // J. Anim. Sci. 1997. Vol. 75. P. 2248 – 2255. DOI: 10.2527/1997.7582248x.

6. Yáñez-Ruiz D.R., Bannink A., Dijkstra J. et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review // Anim. Feed Sci. Technol. 2016. Vol. 216. P. 1 – 18. DOI: 10.1016/j.anifeedsci.2016.03.016.

7. Iqbal R., Arango S., Tagliapietra F. et al. Gas Endeavour: An Innovative Equipment for Estimating Methane Kinetics During In Vitro Rumen Fermentation // Animals (Basel). 2025. Vol. 15. Iss. 9. P. 21. DOI: 10.3390/ani15091331.

8. Li Q., Ma Z., Huo J. et al. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield // ISME J. 2024. Vol. 18. Iss. 1. 16 p. DOI: 10.1093/ismejo/wrad016.

9. Getabalew M., Alemneh T., Akeberegn D. Methane production in ruminant animals: implication for their impact on climate change // Concepts of Dairy & Veterinary Sciences. 2019. Vol. 2. Iss. 4. P. 204 – 211. DOI: 10.32474/CDVS.2019.02.000142.

10. Lozano M.G., Yadira P.G., Abigail K. et al. Livestock methane emission: microbial ecology and mitigation strategies // Livestock Science / S. Sekkin (ed.). InTech. 2017. Р. 162. DOI: 10.5772/65859.

11. Ungerfeld E.M. A theoretical comparison between two ruminal electron sinks // Front. Microbiol. 2013. Vol. 4. 319 p. DOI:10.3389/fmicb.2013.00319.

12. Аринжанова М. С. Анализ совершенствования технологии сохранения рубцовой жидкости. Искусственные рубцы жвачных животных // Животноводство и кормопроизводство. 2022. Т. 105. № 2. С. 70 – 83. DOI: 10.33284/2658-3135-105-2-70.

13. Akhigbe I.B., Munir K., Akinade O. et al. Iot technologies for livestock management: a review of present status, opportunities, and future trends // Big Data Cogn. Comput. 2021. Vol. 5. Iss. 1. е10. DOI: 10.3390/bdcc5010010.

14. Азимов Г.И., Бойко В.И, Елисеев А.П. Анатомия и физиология сельскохозяйственных животных. 3-е изд. М.: Колос, 1978. 415 с.

15. Reddy P.R.K., Hyder I. Ruminant Digestion // Textbook of Veterinary Physiology / P.K. Das, V. Sejian, J. Mukherjee, D. Banerjee (eds). Springer, Singapore, 2023. Р. 353 – 366. URL: https://doi.org/10.1007/978-981-19-9410-4_14.

16. Owens F.N., Basalan M. Ruminal Fermentation // Rumenology. 2016. Р. 63 – 102. URL: https://link.springer.com/chapter/10.1007/978-3-319-30533-2_3#Sec14.

17. Shi J., Su H., He S. Pan-genomic insights into rumen microbiome-mediated short-chain fatty acid production and regulation in ruminants // Microorganisms. 2025. Vol. 13. Iss. 6. 21 p. DOI:10.3390/microorganisms13061175.

18. Lingen H.J. van, Plugge C.M., Fadel J.G. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation // PLoS One. 2016. Vol. 11. Iss. 10. 18 p. DOI: 10.1371/journal.pone.0161362.

19. Wallace R.J., Onodera R., Cotta M.A. Metabolism of nitrogen-containing compounds // The Rumen Microbial Ecosystem / P.N. Hobson, C.S. Stewart (eds). Springer. Dordrecht, 1997. P. 283 – 328. URL: https://doi.org/10.1007/978-94-009-1453-7_7.

20. Hackmann T.J., Firkins J.L. Maximizing efficiency of rumen microbial protein production // Front. Microbiol. 2015. Vol. 6. 16 р. DOI: 10.3389/fmicb.2015.00465.

21. Weiss W.P. A 100-year review: from ascorbic acid to zinc – Mineral and vitamin nutrition of dairy cows // J. Dairy Sci. 2017. Vol.100. P. 10045 – 10060. DOI:10.3168/jds.2017-12935.

22. Shi L., Dong H., Reguera G. et al. Extracellular electron transfer mechanisms between microorganisms and minerals // Nat Rev Microbiol. 2016. Vol. 14. Iss. 10. P. 651 – 662. DOI:10.1038/nrmicro.2016.93.

23. Moore E.K., Jelen B.I., Giovannelli D. et al. Metal availability and the expanding network of microbial metabolisms in the Archaean eon // Nat Geosci. – 2017. Vol. 10. P. 629 – 636. DOI: 10.1038/ngeo3006.

24. Ramsawroop Kumar S. Effect of minerals on rumen microbial activity // Animal Nutrition. 2021. URL: https://epashupalan.com/10410/animal-nutrition/effect-of-minerals-on-rumen-microbial-activity/.

25. Souza V.C., White R.R. Variation in urea kinetics associated with ruminant species, dietary characteristics, and ruminal fermentation: A meta-analysis // J. Dairy Sci. 2021. Vol. 104. Iss. 3. P. 2935 – 2955. DOI: 10.3168/jds.2020-19447.

26. Silva L.F.P., Dixon R.M., Costa D.F.A. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets //Anim. Prod. Sci. 2019 Vol. 59. Iss. 11. P. 2093 – 2107. DOI: 10.1071/AN19234.

27. Samal L., Dash S.K. Nutritional Interventions to Reduce Methane Emissions in Ruminants // Animal Feed Science and Nutrition-Production, Health and Envi-ronment. IntechOpen, 2022. 174 p. DOI: 10.5772/intechopen.101763.

28. Xu Q., Qiao Q., Gao Y. et.al. Gut Microbiota and Their Role in Health and Metabolic Disease of Dairy Cow // Front. Nutr. Sec. Nutrition and Microbes. 2021. Vol. 8. P. 13. |https://doi.org/10.3389/fnut.2021.701511.

29. Kumar S., Dagar S.S., Puniya A.K. et.al. Changes in methane emission, rumen fer-mentation in response to diet and microbial interactions // Res Vet Sci. 2013. Vol. 94. P. 263 – 268. DOI:10.1016/j.rvsc.2012.09.007.

30. Курилов Н.В., Короткова А.П. Физиология и биохимия пищеварения жвачных. М.: Колос, 1971. 432 с.

31. Алиев А.А. Обмен веществ у жвачных животных. – М.: НИЦ Инженер, 1997. С. 36.

32. DePeters E.J., George L.W. Rumen transfaunation // Immunol Lett. 2014. Vol. 162. Iss. 2. P. 69 – 76. DOI: 10.1016/j.imlet.2014.05.009.

33. Maccarana L., Cattani M., Tagliapietra F. et al. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach // J. of Animal Science and Biotechnology. 2016. Vol. 7. P. 35.

34. Pell A.N., Schofield P. Computerized monitoring of gas production to measure forage digestion in vitro // J. Dairy Sci. 1993. Vol. 76. Iss. 4. P. 1063 – 1073.

35. Theodorou M.K., Williams B.A., Dhanoa M.S. et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds // Anim Feed Sci Technol. 1994. T. 4. Vol. 3. Iss. 4. P. 185 – 197.

36. Davies Z.S., Mason D., Brooks A.E. et al. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage // Anim Feed Sci Technol. 2000. T. 83. Vol. 3. Iss. 4. P. 205 – 221.

37. Tedeschi L.O., Muir J.P., Naumann H.D. et al. Nutritional aspects of ecologically relevant phytochemicals in ruminant production // Front. Vet. Sci. 2021. Vol. 8. P. 24. DOI: 10.3389/fvets.2021.628445.

38. Theodorou M.K., Williams B.A., Dhanoa M.S. et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds // Anim. Feed Sci. Technol. 1994. Vol. 48. Р. 185 – 197. DOI: 10.1016/0377-8401(94)90171-6.

39. Mauricio R.M., Mould F.L., Dhanoa, M.S. et al. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation // Anim. Feed Sci. Technol. 1999. Vol. 79. P. 321 – 330. DOI: 10.1016/S0377-8401(99)00033-4.

40. Czerkawski J.W., Breckenridge G. Design and development of a long-term rumen simulation technique (RUSITEC) // Br. J. Nutr. 1977. Vol. 38. P. 371 – 384. DOI: 10.1079/bjn19770102.

41. Hoover W.H., Stokes S.R. Balancing carbohydrates and proteins for optimum rumen microbial yield // J. Dairy Sci. 1991. Vol. 74. P. 3630 – 3644. DOI: 10.3168/jds.S0022-0302 (91)78553-6.

42. Automated fermenter. Elementec. Rusitec Model 3896. 2024. URL: https://www.elementec.ie/product/rusitec-model-3896 (дата обращения: 22.07.2025).

43. An in vitro semi continuous culture system. TANUVAS-Technologies. TANUVAS-RUSITEC. 2014. URL: https://agritech.tnau.ac.in/animal_husbandry/animhus_tanuvas_tech_equipments_resitec.html (дата обращения: 22.07.2025).

44. Gomez A.M., Stern M.D., Salfer I. The role of the rumen microbiome in the digestion of dairy cows // Innovation News Network. 2020. URL: https://www.innovationnewsnetwork.com/the-role-of-therumen-microbiome-in-the-digestion-of-dairy-cows/7751/ (дата обращения: 22.07.2025).

45. Getachew G., Blümmel M., Makkar H.P.S. et al. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review // Anim. Feed Sci. Technol. 1998. Vol. 72. P. 261 – 281. DOI: 10.1016/S0377-8401(97)00189-2.

46. Danielsson R., Ramin M., Bertilsson J. et al. Evaluation of a gas in vitro system for pre-dicting methane production in vivo // J. Dairy Sci. 2017. Vol. 100. P. 8881 – 8894. DOI: 10.3168/jds.2017-12675.

47. Tilley J.M.A., Terry R.A. et al. A two-stage technique for the in vitro digestion of forage crops / // J. Br. Grassl. Soc. 1963. Vol. 18. P. 104 – 111. DOI: 10.1111/j.1365-2494.1963.tb00335.x.

48. Fon F.N. Laboratory cultured faecal inoculum as a substitute for fresh rumen inoculum for in vitro feed evaluation // African Journal of Agricultural Research. 2012. Vol. 7. Iss. 49. P. 6595 – 6604. DOI: 10.5897/AJAR12.1634.

49. Min B.R., Castleberry L., Allen H. et al. Associative effects of wet distiller’s grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes // J. Anim. Sci. 2019. Vol. 97. P. 4668 – 4681.

50. Shaw C.A., Park Y., Gonzalez M. et al. A Comparison of Three Artificial Rumen Systems for Rumen Microbiome Modeling // Fermentation. 2023. Vol.9. Iss.11. P. 953. URL: https://doi.org/10.3390/fermentation9110953.

51. Storm I.M.L.D., Hellwing A.L.F. Nielsen N.I. et al. Methods for Measuring and Estimating Methane Emission from Ruminants // Animals. 2012. Vol. 2. Iss. 2. P. 160 – 183. DOI:10.3390/ani2020160.

52. Система добычи газа АНКОМ : cайт. URL: https://www.ankom.com/productcatalog/ankom-rf-gas-production-system (дата обращения 22.07.2025).

53. Gas Endeavour Anaerobic Testing Handbook BPC Instruments. Version 1.0. BPC Instruments AB. Lund, Sweden. 2024 : сайт. URL: https://bpcinstruments.com/wp-content/uploads/2022/02/2022_Gas-Endeavour-Manual.pdf. (дата обращения 22.07.2025).

54. Ungerfeld E. M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions // Front Microbiol. 2020. Vol. 11. P. 589. DOI: 10.3389/fmicb.2020.00589.

55. Almeida A.K., Hegarty R.S., Cowie A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems // Anim. Nutr. 2021. Vol. 7. P. 1219 – 1230. DOI: 10.1016/j.aninu.2021.09.005.

56. Harmon D.L., Richards C.J. Considerations for gastrointestinal cannulations in ruminants // J. Anim. Sci. 1997. Vol. 75. P. 2248 – 2255. DOI: 10.2527/1997.7582248x


Рецензия

Для цитирования:


Зеленченкова А.А., Боголюбова Н.В. Современные методы исследования ферментации в рубце in vitro. Успехи наук о животных. 2025;(3):74-88. https://doi.org/10.25687/3034-493X.2025.4.3.005

For citation:


Zelenchenkova A.A., Bogolyubova N.V. Modern in vitro rumen fermentation research method. Ernst Journal of Animal Science. 2025;(3):74-88. (In Russ.) https://doi.org/10.25687/3034-493X.2025.4.3.005

Просмотров: 55


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 3034-493Х (Online)